
 Dot Net Syllabus

[Type text] Page 1

The .NET MVC (Model-View-Controller)

framework is a popular design pattern used in

web application development. It is a part of the

ASP.NET framework and follows the MVC

architecture to separate concerns and improve

code maintainability.

.NET MVC Syllabus

Module 1: Introduction to .NET and

MVC

 Overview of .NET Framework
o History and evolution of .NET.

o Understanding .NET Core vs.

.NET Framework.

o Key components: Common

Language Runtime (CLR), Base

Class Library (BCL).

 Introduction to MVC Architecture
o Overview of MVC design pattern.

o Benefits of MVC: Separation of

concerns, testability,

maintainability.

o Understanding the role of Model,

View, and Controller.

 Setting up .NET MVC Development

Environment
o Installing Visual Studio or Visual

Studio Code.

o Creating a simple MVC project in

Visual Studio.

o Overview of the solution structure

in an MVC project.

Module 2: ASP.NET MVC Basics

 Understanding MVC Components
o Model: Represents the data and

business logic.

o View: User interface (UI)

rendering.

o Controller: Handles user input

and updates the model and view.

 Routing in ASP.NET MVC
o URL patterns and how they map

to controllers and actions.

o Configuring routing in

RouteConfig.cs.

o Understanding default routes and

custom routes.

 Creating Controllers
o Syntax for creating controllers.

o Action methods and action

results.

o Returning views from controllers.

o Controller lifecycle.

 Creating Views
o Using Razor syntax for views.

o Understanding @Model and

@Html helpers.

o Creating and rendering views

from controllers.

o View types: strongly typed and

dynamically typed views.

Module 3: Working with Models

 Introduction to Models in MVC
o Models as classes that define the

data structure.

o Creating a model class in MVC.

o Connecting models with

databases using Entity

Framework.

 Model Binding
o Passing data from views to

controllers using form

submission.

o Binding form data to model

properties.

o Validating models with data

annotations.

 Dot Net Syllabus

[Type text] Page 2

 Data Annotations
o Introduction to data validation

using attributes (e.g., Required,

Range, StringLength).

o Custom validation in models.

 Entity Framework
o Introduction to Entity Framework

(EF) and its importance.

o CRUD operations with EF

(Create, Read, Update, Delete).

o Code-first and database-first

approaches.

o Setting up database context and

connecting to a database.

Module 4: Views, Layouts, and Partial

Views

 Creating Views in MVC
o Types of views: Razor views,

Partial Views, and Shared Views.

o Using layout files to create

consistent page structures.

o Understanding and using

_Layout.cshtml.

 Partial Views
o Creating reusable components

with Partial Views.

o Rendering Partial Views in parent

views.

o Advantages of Partial Views for

performance and maintainability.

 Form Handling in Views
o Creating forms for CRUD

operations.

o Binding form data to models.

o Using @Html.BeginForm,

@Html.EditorFor, and other

HTML helpers.

Module 5: Controllers and Actions

 Controller Fundamentals
o Controller actions and action

result types: ActionResult,

ViewResult, RedirectResult,

etc.

o Action filters: Authorization,

logging, custom filters.

o Handling requests and routing to

appropriate actions.

 Action Parameters
o Passing data to action methods.

o Using query strings, form data,

and route data.

o Accepting parameters in

controller methods.

 Redirecting and Returning Data
o Redirecting from one action to

another.

o Returning JSON,

RedirectToAction, or

RedirectToRoute.

Module 6: Validation and Error

Handling

 Model Validation
o Using Data Annotations for

validation.

o Validating models in the

controller.

o Client-side validation using

jQuery and unobtrusive

validation.

 Error Handling in ASP.NET MVC
o Global error handling using

Application_Error and

Error.cshtml.

o Custom error pages (404, 500,

etc.).

 Dot Net Syllabus

[Type text] Page 3

o Using try-catch blocks in

controllers.

o Logging errors using logging

frameworks like NLog or Serilog.

Module 7: Authentication and

Authorization

 Authentication Basics
o Implementing user authentication

using forms authentication.

o Integrating ASP.NET Identity

for authentication and user

management.

o Implementing login, registration,

and logout features.

 Authorization Basics
o Role-based authorization and

access control.

o Attribute-based authorization:

[Authorize],

[AllowAnonymous].

o Custom authorization filters.

Module 8: Web API in ASP.NET MVC

 Introduction to Web API
o Difference between Web API and

MVC.

o Creating RESTful services using

ASP.NET Web API.

o HTTP methods: GET, POST,

PUT, DELETE.

 Creating a Web API Controller
o Setting up API routes and

controllers.

o Returning data as JSON or XML.

o Understanding and using

HttpResponseMessage.

 Consuming Web API in MVC

o Calling Web API services from

an MVC controller.

o Using HttpClient to interact with

external APIs.

o Handling API responses.

Module 9: Advanced Topics

 Filters in MVC
o Action Filters:

OnActionExecuting,

OnActionExecuted.

o Result Filters:

OnResultExecuting,

OnResultExecuted.

o Custom filters for logging,

security, etc.

 Dependency Injection in ASP.NET

MVC
o Introduction to Dependency

Injection (DI).

o Using Unity or Ninject for DI in

MVC applications.

 Unit Testing MVC Applications
o Writing unit tests for controllers

and services.

o Using MSTest or NUnit for

testing.

o Mocking dependencies with Moq.

Module 10: Deployment and Best

Practices

 Deploying ASP.NET MVC

Applications
o Deploying to IIS (Internet

Information Services).

o Using Azure App Services for

cloud-based deployment.

 Dot Net Syllabus

[Type text] Page 4

o Configuration management and

connection strings.

 Performance Optimization
o Caching in MVC: Output

caching, data caching, and

application caching.

o Minification and bundling of

scripts and styles.

 Security Best Practices
o Securing web applications:

HTTPS, SQL injection

prevention, Cross-Site Scripting

(XSS), and Cross-Site Request

Forgery (CSRF).

o Configuring and using

AntiForgeryToken.

Tools and Technologies Covered in the

Course:

 Visual Studio or Visual Studio Code:

Integrated development environment

(IDE).

 Entity Framework: ORM for database

interaction.

 SQL Server or any relational database.

 HTML, CSS, and JavaScript: Frontend

technologies.

 jQuery and Bootstrap: For UI

development.

 ASP.NET Identity: For authentication

and authorization.

 Azure: For cloud deployment.

Projects and Case Studies:

 End-to-End MVC Application Project
o Build a complete application that

involves CRUD operations, user

authentication, and data display.

 Capstone Project

o Develop a real-world project,

such as an e-commerce website, a

blog platform, or a task

management system.

Learning Outcomes:

By the end of this course, students will be able

to:

 Develop dynamic, data-driven web

applications using ASP.NET MVC.

 Understand and implement the MVC

architecture.

 Work with databases using Entity

Framework.

 Implement authentication, authorization,

and security in ASP.NET MVC

applications.

 Deploy MVC applications to cloud

services like Azure or on-premises IIS

servers.

