
 Dot Net Syllabus

[Type text] Page 1

The .NET MVC (Model-View-Controller)

framework is a popular design pattern used in

web application development. It is a part of the

ASP.NET framework and follows the MVC

architecture to separate concerns and improve

code maintainability.

.NET MVC Syllabus

Module 1: Introduction to .NET and

MVC

 Overview of .NET Framework
o History and evolution of .NET.

o Understanding .NET Core vs.

.NET Framework.

o Key components: Common

Language Runtime (CLR), Base

Class Library (BCL).

 Introduction to MVC Architecture
o Overview of MVC design pattern.

o Benefits of MVC: Separation of

concerns, testability,

maintainability.

o Understanding the role of Model,

View, and Controller.

 Setting up .NET MVC Development

Environment
o Installing Visual Studio or Visual

Studio Code.

o Creating a simple MVC project in

Visual Studio.

o Overview of the solution structure

in an MVC project.

Module 2: ASP.NET MVC Basics

 Understanding MVC Components
o Model: Represents the data and

business logic.

o View: User interface (UI)

rendering.

o Controller: Handles user input

and updates the model and view.

 Routing in ASP.NET MVC
o URL patterns and how they map

to controllers and actions.

o Configuring routing in

RouteConfig.cs.

o Understanding default routes and

custom routes.

 Creating Controllers
o Syntax for creating controllers.

o Action methods and action

results.

o Returning views from controllers.

o Controller lifecycle.

 Creating Views
o Using Razor syntax for views.

o Understanding @Model and

@Html helpers.

o Creating and rendering views

from controllers.

o View types: strongly typed and

dynamically typed views.

Module 3: Working with Models

 Introduction to Models in MVC
o Models as classes that define the

data structure.

o Creating a model class in MVC.

o Connecting models with

databases using Entity

Framework.

 Model Binding
o Passing data from views to

controllers using form

submission.

o Binding form data to model

properties.

o Validating models with data

annotations.

 Dot Net Syllabus

[Type text] Page 2

 Data Annotations
o Introduction to data validation

using attributes (e.g., Required,

Range, StringLength).

o Custom validation in models.

 Entity Framework
o Introduction to Entity Framework

(EF) and its importance.

o CRUD operations with EF

(Create, Read, Update, Delete).

o Code-first and database-first

approaches.

o Setting up database context and

connecting to a database.

Module 4: Views, Layouts, and Partial

Views

 Creating Views in MVC
o Types of views: Razor views,

Partial Views, and Shared Views.

o Using layout files to create

consistent page structures.

o Understanding and using

_Layout.cshtml.

 Partial Views
o Creating reusable components

with Partial Views.

o Rendering Partial Views in parent

views.

o Advantages of Partial Views for

performance and maintainability.

 Form Handling in Views
o Creating forms for CRUD

operations.

o Binding form data to models.

o Using @Html.BeginForm,

@Html.EditorFor, and other

HTML helpers.

Module 5: Controllers and Actions

 Controller Fundamentals
o Controller actions and action

result types: ActionResult,

ViewResult, RedirectResult,

etc.

o Action filters: Authorization,

logging, custom filters.

o Handling requests and routing to

appropriate actions.

 Action Parameters
o Passing data to action methods.

o Using query strings, form data,

and route data.

o Accepting parameters in

controller methods.

 Redirecting and Returning Data
o Redirecting from one action to

another.

o Returning JSON,

RedirectToAction, or

RedirectToRoute.

Module 6: Validation and Error

Handling

 Model Validation
o Using Data Annotations for

validation.

o Validating models in the

controller.

o Client-side validation using

jQuery and unobtrusive

validation.

 Error Handling in ASP.NET MVC
o Global error handling using

Application_Error and

Error.cshtml.

o Custom error pages (404, 500,

etc.).

 Dot Net Syllabus

[Type text] Page 3

o Using try-catch blocks in

controllers.

o Logging errors using logging

frameworks like NLog or Serilog.

Module 7: Authentication and

Authorization

 Authentication Basics
o Implementing user authentication

using forms authentication.

o Integrating ASP.NET Identity

for authentication and user

management.

o Implementing login, registration,

and logout features.

 Authorization Basics
o Role-based authorization and

access control.

o Attribute-based authorization:

[Authorize],

[AllowAnonymous].

o Custom authorization filters.

Module 8: Web API in ASP.NET MVC

 Introduction to Web API
o Difference between Web API and

MVC.

o Creating RESTful services using

ASP.NET Web API.

o HTTP methods: GET, POST,

PUT, DELETE.

 Creating a Web API Controller
o Setting up API routes and

controllers.

o Returning data as JSON or XML.

o Understanding and using

HttpResponseMessage.

 Consuming Web API in MVC

o Calling Web API services from

an MVC controller.

o Using HttpClient to interact with

external APIs.

o Handling API responses.

Module 9: Advanced Topics

 Filters in MVC
o Action Filters:

OnActionExecuting,

OnActionExecuted.

o Result Filters:

OnResultExecuting,

OnResultExecuted.

o Custom filters for logging,

security, etc.

 Dependency Injection in ASP.NET

MVC
o Introduction to Dependency

Injection (DI).

o Using Unity or Ninject for DI in

MVC applications.

 Unit Testing MVC Applications
o Writing unit tests for controllers

and services.

o Using MSTest or NUnit for

testing.

o Mocking dependencies with Moq.

Module 10: Deployment and Best

Practices

 Deploying ASP.NET MVC

Applications
o Deploying to IIS (Internet

Information Services).

o Using Azure App Services for

cloud-based deployment.

 Dot Net Syllabus

[Type text] Page 4

o Configuration management and

connection strings.

 Performance Optimization
o Caching in MVC: Output

caching, data caching, and

application caching.

o Minification and bundling of

scripts and styles.

 Security Best Practices
o Securing web applications:

HTTPS, SQL injection

prevention, Cross-Site Scripting

(XSS), and Cross-Site Request

Forgery (CSRF).

o Configuring and using

AntiForgeryToken.

Tools and Technologies Covered in the

Course:

 Visual Studio or Visual Studio Code:

Integrated development environment

(IDE).

 Entity Framework: ORM for database

interaction.

 SQL Server or any relational database.

 HTML, CSS, and JavaScript: Frontend

technologies.

 jQuery and Bootstrap: For UI

development.

 ASP.NET Identity: For authentication

and authorization.

 Azure: For cloud deployment.

Projects and Case Studies:

 End-to-End MVC Application Project
o Build a complete application that

involves CRUD operations, user

authentication, and data display.

 Capstone Project

o Develop a real-world project,

such as an e-commerce website, a

blog platform, or a task

management system.

Learning Outcomes:

By the end of this course, students will be able

to:

 Develop dynamic, data-driven web

applications using ASP.NET MVC.

 Understand and implement the MVC

architecture.

 Work with databases using Entity

Framework.

 Implement authentication, authorization,

and security in ASP.NET MVC

applications.

 Deploy MVC applications to cloud

services like Azure or on-premises IIS

servers.

